
Graphs, Search, Pathfinding

(behavior involving where to go)

Static, Kinematic, & Dynamic Movement;
Steering, Flocking, Formations

(behavior involving how to go)

1

Disclaimer: I use these notes as a guide rather than a
comprehensive coverage of the topic. They are neither a
substitute for attending the lectures nor for reading the
assigned material.

PREVIOUSLY ON…

2

Graph Search: Sorting Successors

• Uninformed (all nodes are same)
– DFS (stack – lifo), BFS (queue – fifo)
– Iterative-deepening (Depth-limited)

• Informed (pick order of node expansion)
– Greedy Best First
– Dijkstra – guarantee shortest path (Elog2N)
– Floyd-Warshall
– A* (IDA*)…. Dijkstra + heuristic, Memory Bounded A*
– D*

• Hierarchical can help

http://en.wikipedia.org/wiki/A*_search_algorithm
3

N-1: Search recap

1. When might you precompute paths?
2. This is a single-source, multi-target shortest path algorithm for

arbitrary directed graphs with non-negative weights. Question?
3. This is a all-pairs shortest path algorithm.
4. How can a designer allow static paths in a dynamic environment?
5. When will we typically use heuristic search?
6. What is an admissible heuristic?
7. When/Why might we use hierarchical pathing?
8. Does path smoothing work with hierarchical?
9. How might we combat fog-of-war?

4

(static, kinematic, dynamic) Movement
Steering, Flocking, Formations

2019-09-11

M&F 3.1-3.4

B 3

Movement & Steering Basics

• Movement calculation often needs to interact with the “Physics” engine
– Avoid characters walking through each other or through obstacles

• Traditional: kinematic movement (not dynamic)
– Characters move (often at fixed speed) instantaneously
– No regard to how physical objects accelerate or brake
– Output: direction to move in (instantaneous change to velocity with magnitude)

• Newer approach: Steering behaviors or dynamic movement (Craig
Reynolds) –
– Characters accelerate and turn based on physics
– Take current motion of character into account
– Output: forces or accelerations that result in velocity change
– flocking ⊂ steering

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt
7

General Algorithm

Millington Fig 3.2
8

Assumptions

• Computed quickly

• Impression of intelligence (&reality), not a simulation

• Character position model: point + orientation

• Full 3D usually unnecessary (ie scalar Θ)
– 2D suffices, thanks to gravity

• (x, y, Θ) … 3 degrees of freedom

– 2½ D (3D position, 2D orientation) covers most
• (x, y, z, Θ) … 4 degrees of freedom

• Rotation is the process of changing orientation

9

Space

• Axes

• Orientation

• Local vs global
coordinate systems

Millington Fig 3.4

10

Vector Form of Orientation

• Convenient to
represent
orientation as unit
vector (len = 1)

• ωv = [sin s, cos s]
Millington Fig 3.5

x

z

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt
11

Statics

• Static, because no information about
movement
– Position

• 2 or 3-dimensional vector

– Orientation
• 2-dimensional unit vector given by an angle

(e.g. [0.997, 0.071]) OR a single real value
between 0 and 2 (e.g. 1.5)

• What do movement algorithms
output?

12

struct StaticState:

position # 2D vector

orientation # single float

struct StaticMovementOutput:

position # 2D/3D vector

orientation # single float

13

Kinematics

• We describe a moving character by
– Position: 2 or 3-D vector
– Orientation:

• 2-dimensional unit vector given by an angle, OR a single
real value between 0 and 2

– Velocity (linear velocity): 2 or 3-D vector
– Rotation (angular velocity)

• 2-dimensional unit vector given by an angle, OR a single
real value between 0 and 2

• Movement behaviors output
– Velocity
– Rotation

• Movement behaviors input STATIC data
– Position and orientation, no velocities

14

struct KinematicState:

position # 2D/3D vector

orientation # single float

velocity # 2D/3D vector

rotation # single float

Note: rotation is angular velocity

struct KinematicOutput:

velocity # 2D/3D vector

rotation # single float

Note: Kinematic movement
algorithms only input position and
orientation, output desired velocity

15

Sidebar: Time & Variable Frame Rates

• Velocities are given in units per second rather than per frame.
Why?

• Older games often used per-frame velocity

– Frames can take different amounts of time

• Explicit update time supports VFR. E.g:

– character going 1 m/s

– Last frame was 20ms duration

– Next frame, character moves 20 mm

16

FACING?

17

Facing

• Motion & facing need not be coupled

• Many games simplify & force character orientation to be in
direction of the velocity

– Instant (can be awkward)

– Smoothing: change orientation to be halfway toward current
direction of motion in each frame

Millington Fig 3.6
18

Changing Orientation (facing)

• Uses static data (position & orientation)

• Outputs desired velocity
– On/off in target direction

– Smoothing may be done (without a)

• New v determines new Θ
getNewOrientation(currentOrientation, targetVelocity)
– If v > 0, return interpolation between current and desired orientation

[atan2(-static.x, static.z)]

– Else use current orientation

19

SEEK, ARRIVE, FLEE, AND WANDER?

But not necessarily in that order

20

Kinematic Seek & Flee

• directs an agent toward a target position

• Input: static data of character & target

• Output: velocity in direction from char to targ
 velocity = target.position – character.position

• Normalize velocity to 1 and multiply by maximum velocity

• Can ignore orientation, or update to face movement direction

• O(1) in time and memory

• Flee = -1 * velocity = character.position – target.position

21

22

Kinematic Arrival

• Seek with full velocity leads to overshooting

– Arrival modification?

24

Kinematic Arrival

• Seek with full velocity leads to overshooting

– Arrival modification: deceleration

• Determine arrival target radius

• Lower velocity within target for arrival

Arrival Circle:

Slow down if
you get here

steering.velocity = target.position – character.position;

if(steering.velocity.length() < radius) {

steering.velocity /= timeToTarget;

if(steering.velocity.length() > MAXIMUMSPEED)

steering.velocity /= steering.velocity.length();

}

else

steering.velocity /= steering.velocity.length();

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt

Millington 3.2.1
25

26

Kinematic Wander

• Move in current direction at max speed

• Vary orientation by some random amount each frame

Millington Fig 3.7
27

Buckland Fig 3.4

28

Kinematics

• Computing a new target velocity based on {x,z} + Θ can look
unrealistic

– Can lead to abrupt changes of velocity

– Must smooth velocity (or use acceleration model)

• {x,z} + Θ + v can increment velocity by some Δ from currv up
to targetv

• Must track velocity in all dimensions plus rotation

29

Kinematic Updates to Position & Orientation

• steering.linear: a 2D vector
– Represents changes in velocity (linear acceleration)

• steering.angular: a real value
– Represents changes in orientation (angular acceleration)

• def update(steering, time)
– Update at each frame

• Position += Velocity * Time + 0.5 * steering.linear * time * time

• Orientation += Rotation * Time + 0.5 * steering.angular * time * time

• Velocity += steering.linear * Time

• Rotation += steering.angular * Time

30

Kinematic Updates to Position & Orientation

• steering.linear: a 2D vector
– Represents changes in velocity (linear acceleration)

• steering.angular: a real value
– Represents changes in orientation (angular acceleration)

• def update(steering, time)
– Update at each frame (if time << 1, use Newton-Euler-1)

• Position += Velocity * Time + 0.5 * steering.linear * time * time

• Orientation += Rotation * Time + 0.5 * steering.angular * time * time

• Velocity += steering.linear * Time

• Rotation += steering.angular * Time

31

See also

• M website: www.ai4g.com
– Algorithms for K {wander, arrive, seek, flee}

– https://github.com/idmillington/aicore

• B Ch 3 (B Ch 1)
– Download sample materials:

http://www.jblearning.com/catalog/9781556220784/

• Animations (for simple). Craig Reynolds
– http://www.red3d.com/cwr/steer/

• http://en.wikipedia.org/wiki/Radian

32

http://www.ai4g.com/
https://github.com/idmillington/aicore
http://www.jblearning.com/catalog/9781556220784/
http://www.red3d.com/cwr/steer/
http://en.wikipedia.org/wiki/Radian

Steering Behaviors (Dynamic)

• Kinematic movement
– Outputs: desired velocity

• Steering movement (behaviors)
– Input: target information

• Velocity and rotation
• Collision geometry
• Paths, for path following
• Average Flock information

– Output: accelerations
• Linear acceleration: 2 or 3-D vector
• Angular acceleration: single float value

• Steering extends kinematic
movement by adding
acceleration and rotation
– Remember:

• p(t): position at time t

• v(t) = p’(t): velocity at time t

• a(t) = v’(t): acceleration at time t

– Hence:
• p v

• v a

33

Steering Input Basics

• Input: agent kinematic and target info
– Target collision info

– Target trajectory

– Target location

– Average flock information

• Steering behavior doesn’t attempt to do much
– Each alg. does a single thing. Fundamental behavior “zoo”

– Combine simple behaviors to make complex

– No: avoid obstacles while chasing character and making detours to nearby
power-ups

35

Dynamic Movement

• Dynamic movement update
– Accelerate in direction of target until maximum velocity is reached

– (Optional) If target is close, lower velocity (Braking)
• Negative acceleration is also limited

– (Optional) If target is very close, stop moving

• Dynamic movement update with Physics engine
– Acceleration is achieved by a force

– Vehicles etc. suffer drag, a force opposite to velocity that increases with
the size of velocity
• Limits velocity naturally

36

Seek + Arrive

Variable Matching

• Simplest family: match one or more elements of source to
target

– Match position (seek/flee): accelerate toward target, decelerate once
near

– Match orientation (align): rotate to align

– Match velocity: follow on a parallel path, copy movements, stay fixed
distance away

37

Core Steering Behaviors

• Variable Matching
– Seek (flee): position of target

– Align: orientation of target

– Arrive (leave(flee)): velocity of target

– Velocity Matching: flocking

• Best way to get a feel:
– Look at pseudo-code in Millington & Funge

– run steering behavior program from source www.ai4g.com,
https://github.com/idmillington/aicore

38

http://www.ai4g.com/
https://github.com/idmillington/aicore

Dynamic Seek

• Seek: Match position of character with the target

• Like kinematic seek, find direction to target and go there as fast as possible
– Kinematic outputs: velocity, rotation

– Dynamic output: linear and angular acceleration

• Kinematic seek:
– velocity = target.position – character.position

– velocity = (velocity.normalize())*maxSpeed

• Dynamic seek:
– acceleration = target.position – character.position

– acceleration = (acceleration.normalize())*maxAcceleration

39

Other behaviors?

• Pursuit / Evade

• Hide

• Obstacle & Wall Avoidance

• Path following (list of points)

• Groups? E.g. offset pursuit

40

Derived & Composite Steering Behaviors

• More complex behaviors derived from core

– Pursue (evade): Seek (flee) based on predicted target position

– Face: Align to target orientation

– Look where going: Face in direction of movement (using Align)

– Collision avoidance: Flee based on obstacle proximity

– Wander: Seek + Face some fictitious moving object

41

Demo

• Pursuit

• Obstacle Avoidance

42

Composite Behaviors

• Pursue / Evade

• Face / Look
where going

• Wander

• Collision
Avoidance

• Obstacle
Avoidance

• Separation
Millington Fig 3.29

43

See Also

• M Ch 3, B Ch 3 (& Ch 1)

• Source from Millington

– https://github.com/idmillington/aicore

• Java-based animations (combined behaviors)

– http://www.red3d.com/cwr/steer/

• http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for
%20Gaming.ppt

44

https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/

